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A numerical study is carried out of the injection of a very viscous liquid of small
electrical conductivity at a constant flow rate through an orifice in a metallic plate
under the action of an electric field. The conditions under which the injected liquid
can form an elongated meniscus with a thin jet emanating from its tip are investigated
by computing the flow, the electric field and the transport of electric charge in the
meniscus and a leading region of the jet. A stationary solution is found only for
values of the flow rate above a certain minimum. At moderate values of the applied
field, this minimum flow rate decreases when the applied field or the conductivity of
the liquid increase. The electric shear stress acting on the surface of the liquid is not
able to drive the liquid into the jet at flow rates smaller than the minimum while,
for any flow rate higher than the minimum, the transfer of electric current to the
surface may occur in a slender region of the jet where charge relaxation effects are
small and the field induced by the electric charge of the jet is important. At high
values of the applied field, the flow rate must be higher than another minimum, which
increases with the applied field, in order for the viscous stress to balance the strong
electric stress acting on the meniscus. The two conditions taken together determine
lower and upper bounds for the applied field at a given flow rate, but the value of
the applied field at which a stationary jet is first established when this parameter is
gradually increased is higher than the lower bound, leading to hysteresis. When the
liquid is electrosprayed in a surrounding dielectric fluid, the viscous shear stress that
this fluid exerts on the surface of the jet eventually balances the electric shear stress
and stops the continuous stretching of the jet. A fraction of the conduction current is
left in the jet when the effect of the outer liquid comes into play in the region where
this current is transferred to the surface, and no stationary solution is found above a
maximum flow rate that decreases when the viscosity of the outer liquid increases or
the applied field decreases. Order of magnitude estimates of the electric current and
the conditions in the current transfer region are worked out.

1. Introduction
The electrospray is a technique for generating nearly monodisperse sprays of small

electrically charged drops of an electrically conducting liquid using electric stresses.
A meniscus of the liquid to be sprayed is subject to an electric field by applying a
high voltage between the liquid, which is in contact with an electrode, and another
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electrode at some distance from the meniscus. The electric field induces an electric
current in the liquid that accumulates electric charge at its surface and causes an
electric stress that elongates the meniscus in the direction of the field. Under different
conditions, the meniscus may either shed charged drops or emit one or several jets
that in turn break into drops. The different functioning modes of an electrospray
and the transitions between them have been classified by Cloupeau & Prunet-Foch
(1990, 1994) and Jaworek & Krupa (1999). The cone-jet mode (Cloupeau & Prunet-
Foch 1989), in which the meniscus takes a conical shape with a single stationary
jet emanating from its tip and breaking into drops at some distance downstream, is
the most suitable for generating small monodisperse drops and has been extensively
studied. In his pioneering work with a meniscus formed at the end of a capillary,
Zeleny (1915, 1935) first showed that the balance of electric and surface tension
stresses in the cone-jet mode requires a voltage of order (γ a/ε0)

1/2, where γ is the
surface tension of the liquid, a is the radius of the base of the meniscus and ε0

is the permittivity of the surrounding medium. Taylor (1964) carried out a correct
analysis of the balance of stresses using a spheroidal approximation for the shape
of the meniscus in order to determine the onset voltage and showed that a conical
meniscus of semiangle α = 49.29◦ is an exact hydrostatic solution (at least in the
vicinity of the tip) for a special value of the voltage. Smith (1986) and Cloupeau
& Prunet-Foch (1989) found hysteresis, whereby the cone-jet can be maintained
when the voltage is decreased below the onset voltage at which the cone-jet first
appears when the voltage is gradually increased. Once a cone-jet is formed, the main
parameters determining the size of the cone-to-jet transition region and the drops are
the conductivity of the liquid and the flow rate injected into the meniscus. The size
of the drops decreases when the flow rate decreases or the conductivity increases; see
Fernández de la Mora & Loscertales (1994), Chen & Pui (1997) and Gañán-Calvo,
Dávila & Barrero (1997), among others, for scaling laws of the size of the drops and
the electric current, and Barrero et al. (2004) for extensions of these results to cone-jets
in baths of dielectric liquids. A stable cone-jet exists only within a range of values of
the flow rate that shifts towards lower flow rates as the conductivity increases (Smith
1986).

Cloupeau & Prunet-Foch (1989) experimentally determined the domain of operation
or region of the voltage/flow rate plane where a cone-jet of a given liquid can be
established. This region is bounded by a minimum voltage that depends on the
flow rate and at which the system jumps to an oscillatory mode, and a maximum
voltage above which instabilities, or a multiple-jet mode, or electrical discharges in
the surrounding gas appear. As was already mentioned, the flow rate can be varied at
constant voltage in the domain of operation between certain minimum and maximum
values. Fernández de la Mora (2007) noted that the existence of a maximum flow rate
probably reflects that the surrounding gas becomes unable to pass the increasing flux
of drops generated when the flow rate increases. The minimum flow rate determines
the thinnest jet and the highest surface electric field that can be attained with a given
liquid (Fernández de la Mora & Loscertales 1994). The breakup of the jet into drops
is most regular near this minimum flow rate, leading to the smallest drops and the
narrowest size distributions (Rosell-Llompart & Fernández de la Mora 1994).

The origin of the minimum flow rate is not yet clear, despite the large amount
of work devoted to ascertain it. Fernández de la Mora & Loscertales (1994)
experimentally found that the minimum flow rate is of order εQ0 in many cases, where
ε is the dielectric constant of the liquid and Q0 = ε0γ /ρK , with ρ and K denoting
the density and electrical conductivity of the liquid. According to these authors,
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charge relaxation effects appear in a certain region around the tip of the meniscus
where the residence time of the flow is of the order of the electric relaxation time of
the liquid te = εε0/K , so that the electric charge of a material element of the liquid
surface cannot increase at the same pace as the electric field acting on the surface
element during its transit across the relaxation region. This condition determines
the order of the electric current as a function of the flow rate. It also implies that the
electric field due to the applied voltage enters the liquid in the relaxation region and
leads to an electric shear stress that can drive the liquid into the jet. Fernández de
la Mora (2007) pointed out that the scaling laws for the length and radius of the jet
derived by Cherney (1999) on the basis of these charge relaxation effects suggest that
the jet could effectively disappear, or break up before the transfer of charge to its
surface is complete, when the flow rate is of order εQ0. As an alternative explanation,
Guerrero et al. (2007) noted that the relaxation region is largely autonomous and is
able to suck a flow rate of order εQ0 or larger independently of the conditions of
the meniscus, which may make a stationary configuration impossible if the meniscus
is fed with a flow rate small compared to εQ0. Gañán-Calvo et al. (1997) proposed
that charge relaxation effects occur in a certain region of the jet, rather than around
the tip of the meniscus, and obtained a minimum flow rate of order ε1/2Q0 from this
condition. Higuera (2008a) estimated the characteristic time of charging of the liquid
surface in the region of the jet where the conduction current is transferred to the
surface, showing that this time may be large compared to the electric relaxation time
of the liquid.

In this paper, a model configuration is used to numerically investigate the domain
of operation of a cone-jet of a very viscous liquid, for which the effect of the inertia
can be neglected in the meniscus and in a leading region of the jet. The model
differs from typical experiments in two important aspects. First, the disparity of
scales between the radius of the jet and the base of the meniscus is not as large
in the computations as in real experiments. As a consequence, some of the results
depend on the size of the meniscus, while Fernández de la Mora & Loscertales (1994)
find that this size is irrelevant in their experiments and others. Second, a parallel
plate electrode configuration is assumed, leading to a uniform electric field far from
the meniscus instead of the more complex electric field around the metallic needle
often used in experiments. The difference between the two fields is large at distances
from the meniscus of the order of its size, but it is not expected to be essential
around its tip, where the elongation of the meniscus intensifies the field in any case.
The two differences between model and experiments commented here are required
to make the computations affordable, but they may have an effect on the results
that should be kept in mind when comparing them to the experiments reviewed
above.

In the framework of this model, a minimum flow rate is found below which no
stationary solution exists. At small values of the electric field applied to the meniscus,
the minimum flow rate is determined by the failure of the electric shear stress to
deflect the liquid surface and drive liquid into the jet against the restoring effect of the
surface tension, which overcomes the normal electric stress when the minimum flow
rate is approached. At high values of the applied field, the electric stresses are large
and disrupt the meniscus if they are not balanced by large viscous stresses, which
exist only for sufficiently high flow rates. Charge relaxation effects may be small in
the vicinity of the minimum flow rate in both cases. A maximum flow rate is also
found when the viscous force exerted on the jet by a surrounding fluid is taken into
account.
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2. Formulation
A flow rate Q of a liquid of viscosity μ and electrical conductivity K (liquid 1

hereafter) is injected through a circular orifice of radius a in a planar metallic plate
into a region occupied by a dielectric liquid of viscosity λμ (liquid 0) which is at
rest far from the orifice. The permittivity of this liquid is ε0 and the permittivity
of the liquid injected through the orifice is ε0ε. The two liquids are immiscible with
an interfacial surface tension γ . The metallic plate is set to a high voltage relative
to another distant parallel plate, which leads to a uniform field E∗

∞ far from the
orifice. This field induces a conduction current in liquid 1 that accumulates electric
charge at its surface. The surface charge is convected by the flow, originating a
surface current additional to the conduction current in liquid 1. In addition, the
electric field and the surface charge cause an electric stress whose components normal
and tangent to the surface (denoted τ e

n and τ e
t is what follows) are given in the

right-hand sides of (2.3b) and (2.3c) (see Landau & Lifshitz 1960; Saville 1997).
In the conditions envisaged here, the electric stress strains the liquid into a jet
of radius small compared to the radius a of the injection orifice. The analysis of
the evolution and conditions of existence of this jet is the subject of the present
paper.

The Reynolds number Re = ρ1vca/μ = ρ1γ a/μ2, where ρ1 is the density of liquid 1
and vc = γ /μ is a characteristic velocity determined by an order-of-magnitude balance
of viscous and surface tension stresses, is assumed to be small. This Reynolds number
is 1.8×10−3 for glycerol in air and 7.4×10−4 for glycerol in hexane when a = 0.5 mm.
The motion of the liquid in and around the meniscus and in at least a leading
region of the jet is dominated by viscous forces and obeys the Stokes equations when
Re � 1. The electric field in liquid i (with i = 0, 1) is Ei = −∇ϕi , where ϕi is the electric
potential in liquid i, which satisfies Laplace’s equation. At the interface, the electric
potential is continuous (ϕ0 = ϕ1) and the electric field satisfies ε0(E0 − ε E1) · n = σ

(Landau & Lifshitz 1960). Here n is a unit vector normal to the interface and
pointing towards liquid 0 and σ is the density of free surface charge. This σ satisfies
the transport equation Dσ/Dt = K E1 · n + σ n · ∇v · n, where Dσ/Dt = ∂σ/∂t + v · ∇σ

is the material derivative of σ and v is the velocity of the liquids at the interface. The
first term on the right-hand side of the equation for σ is the rate of accumulation
of charge per unit area of the interface and unit time due to the component of the
conduction current density in liquid 1, j = K E1, normal to the interface. The second
term is the rate of change of σ due to the stretching of the interface. Here n · ∇v · n
is the negative of the straining rate of a material element of the interface (Batchelor
1967). Conduction from liquid 1 tends to accumulate charge at the interface, but
this charge reduces the normal electric field E1 · n that drives conduction (because
E1 · n = (E0 · n − σ/ε0)/ε from the boundary condition for the electric fields normal
to the interface). The characteristic time for conduction to screen liquid 1 from the
outer field is the electric relaxation time te = ε0ε/K , which follows from the balance
σ/te ∼ K E1 · n with σ ∼ ε0 E0 · n ∼ ε0ε E1 · n.

The mathematical formulation of the electrohydrodynamical problem is similar to
that of (Higuera 2006, 2007b, 2008a) and will be described briefly here. Distances are
scaled with the radius a of the orifice, velocities with the viscous-capillary velocity
vc = γ /μ, and electric fields with Ec = (γ /ε0a)1/2. The electric potentials, density of
surface charge and electric currents are scaled with Eca, ε0Ec and ε0Ecvca, respectively.
The interface between the liquids, which is a free material surface, is denoted by
f (x, t) = 0. The governing equations and boundary conditions are (subscripts 0 and
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1 denote velocities, pressures and electric fields in liquids 0 and 1)

∇ · v0 = 0, 0 = −∇p0 + λ∇2v0, ∇2ϕ0 = 0 (2.1)

in liquid 0, for f (x, t) > 0,

∇ · v1 = 0, 0 = −∇p1 + ∇2v1, ∇2ϕ1 = 0 (2.2)

in liquid 1, for f (x, t) < 0,

Df

Dt
= 0, v0 = v1, (2.3a)

p0 − p1 + n ·
(
τ ′
1 − τ ′

0

)
· n + ∇ · n =

1

2

(
E2

0n − εE2
1n

)
+

1

2
(ε − 1)E2

1t , (2.3b)

t ·
(
τ ′
1 − τ ′

0

)
· n = σE1t , (2.3c)

E0n − εE1n = σ, E0t = E1t , (2.3d )

Dσ

Dt
= ΛE1n + σ n · ∇v · n (2.3e)

at the interface, f (x, t) = 0, which is assumed to be anchored to the edge of the orifice
(f = 0 at the edge),

v0 = 0, v1 =
Ca

π
i, ϕ0 = ϕ1 = 0 (2.4)

at the metallic plate (x = 0), and

p0 = p1 = 0, v0 = 0, ∇ϕ0 = ∇ϕ1 = −E∞ i (2.5)

far from the plate. Here pi , with i = 0, 1, is the pressure of liquid i referred to the
pressure of liquid 0 far from the orifice and scaled with μvc/a; τ ′

0 = λ[∇v0 + (∇v0)
T

]

and τ ′
1 = ∇v1 + (∇v1)

T

are the dimensionless viscous stress tensors; n and t are unit
vectors normal and tangent to the interface; E0n = E0 · n, E0t = E0 · t , and similarly
for E1n and E1t ; i is a unit vector perpendicular to the metallic plate, and x is the
dimensionless distance to the plate.

The five dimensionless parameters that appear in (2.1)–(2.5) are

Ca =
μQ

γa2
, E∞ =

ε
1/2
0 a1/2E∗

∞
γ 1/2

, ε, Λ =
μKa

ε0γ
, λ. (2.6)

The electric current I induced by the applied field E∞ is the sum of the conduction
current in the bulk of liquid 1 and the surface current due to the convection of
the free electric charge at the interface. The sum of the two contributions to the
current is a constant independent of x for any stationary solution of (2.1)–(2.5). For
an axisymmetric solution, I = Ib + Is with

Ib = 2πΛ

∫ rs

0

E1xr dr and Is = 2πσvsrs, (2.7)

where E1x is the axial component of the electric field in liquid 1, r is the distance to
the symmetry axis, rs(x) is the radius of the cross-section of the interface and vs(x) is
the velocity of the liquids at the interface.

The asymptotic form of the solution of (2.1)–(2.5) far from the orifice is very much
affected by the presence of the outer liquid. In the absence of whipping or breakup,
the stationary flow in the jet is quasi-unidirectional for x 
 1. The Stokes equation
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in (2.2) can be integrated across the jet to yield, upon using the boundary conditions
(2.3b) and (2.3c),

∂

∂x

(
3πr2

s

∂v

∂x

)
+ πr2

s

∂

∂x

(
τ e
n + τ 0

n − 1

rs

)
+ 2πrs

(
τ e
t + τ 0

t

)
= 0, (2.8)

which is a generalization of the result in Feng (2002) (see also Higuera 2006). Here
v = Ca/πr2

s is the velocity of liquid 1, which is nearly uniform in the jet cross-section,
and (τ e

n , τ e
t ) and (τ 0

n , τ 0
t ) are the components normal and tangent to the interface of the

electric stress and the stress of liquid 0 on the interface. Far from the orifice E1t ≈ E∞
and the electric shear stress is τ e

t = σE1t ≈ (I − Ib)E∞rs/2Ca, where the density of
surface charge has been obtained from the equality Is = I − Ib with Is ≈ 2πσvrs , and
Ib ≈ πΛE∞r2

s .
In the absence of outer liquid (λ= 0), it is ∂τ 0

n /∂x = τ 0
t = 0 in (2.8). The balance of

the axial forces due to the effective axial viscous stress (first term of the equation), to
the axial gradient of the pressure variation caused by the surface tension (in the second
term), and to the electric shear stress (third term) gives in this case (Higuera 2006)

rs ≈
(

1 +

√
1 +

24

π
IE∞

)
Ca

2IE∞x
. (2.9)

The radius of the jet, and therefore the conduction current, tend to zero far from the
orifice.

When λ> 0, the motion that the jet induces in the outer liquid can be represented as
a line distribution of Stokeslets (Happel & Brenner 1965). The condition of continuity
of the velocity at the interface gives the viscous shear stress of the outer liquid on
the interface as τ 0

t = −λv/rs , up to logarithmically small terms. This stress eventually
balances the electric shear stress (τ 0

t ≈ −τ e
t ), giving the algebraic equation

(
I − πΛE∞r2

s

)
r4
s =

2λCa2

πE∞
(2.10)

for the radius of the jet. The result that the radius of the jet tends to a constant
asymptotic value far downstream is to be understood as a coarse approximation
only, given the large error involved in the evaluation of τ 0

t above. This constant
asymptotic radius is to be compared to the continuous decrease of the radius
in (2.9). The conduction current tends to a constant value in the approximation
leading to (2.10). This equation has two positive real roots if the parameter group
G = I 3/λΛ2E∞Ca2 > 27π/2 and none elsewhere. If G is large, the conduction current
is small compared to the total current for the lower root of (2.10) and approximately
equal to the total current for the upper root. The lower root, which is much smaller
than the upper root and is probably the only one physically attainable in these
conditions (see § 3.2), and the associated values of the velocity of the liquid and the
density of surface charge, are

rs ≈ rs∞ =

(
2λCa2

πE∞I

)1/4

, v ≈
(

E∞I

2πλ

)1/2

, σ ≈
(

λI 3

8πE∞Ca2

)1/4

. (2.11)

Stationary axisymmetric solutions of (2.1)–(2.5) have been computed by letting the
system evolve in time from an arbitrary initial condition. Boundary element methods
have been used to solve the Laplace and Stokes equations (2.1) and (2.2), and a second
order Runge–Kutta method has been used to integrate the evolution equations for
the liquid interface and the density of surface charge in (2.3a) and (2.3e). As in
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Figure 1. Dimensionless electric current (I ) as a function of the dimensionless flow rate (Ca)
for ε = 20, λ= 0 (solid), 0.01 (dashed) and 0.1 (chain), E∞ = 1, 2, 3, 4 and 5, increasing from
bottom to top, and Λ= 103 (a) and 2 × 104 (b). Some of the boundaries of the range of Ca
where a solution exists are marked with dots.

previous works (Higuera 2006, 2007a, 2008a), the jet has been artificially truncated at
a distance from the orifice sufficiently large to ensure, through numerical tests, that
the solution is insensitive to the truncation.

3. Results and discussion
The electric current in shown in figure 1 as a function of the flow rate Ca for ε = 20,

different values of the applied field E∞ and the viscosity ratio λ, and two values of
the dimensionless conductivity Λ. The electric current always increases with Ca and
E∞. It also increases with Λ, though less than linearly, and with λ. The values Λ = 103

and 2 × 104 used in figure 1 can be obtained for glycerol in air with a = 0.5 mm and
conductivities K = 7.6 × 10−7 Sm−1 and 1.5 × 10−5 S m−1.

There are several boundaries of the region of the parameter space where a stationary
solution with a jet emanating from the tip of the meniscus of liquid 1 exists. There
is a minimum flow rate below which no stationary solution is found. At low E∞,
the minimum flow rate decreases slightly when E∞ increases (though this cannot
be clearly seen at the scale of figure 1; see figures 2a and 3) and the stationary
solution breaks down in a leading region of the jet when the minimum flow rate is
approached. At high E∞, on the other hand, the electric forces are strong enough to
disrupt the meniscus when the flow rate is too small, leading to a minimum flow rate
that increases with E∞ (see figure 3).

In the presence of an outer liquid (λ> 0), there is also an upper limit to the flow
rate, which increases with E∞ and decreases when λ increases. The electric shear at
the interface is not able to overcome the viscous shear due to the outer liquid for
values of the flow rate above this maximum. The stationary solution breaks down at
the beginning of the jet when the maximum flow rate is approached.

The characteristics of the flow are analysed separately for λ=0 and λ> 0 in what
follows.

3.1. Case of λ= 0

3.1.1. Minimum flow rate at hysteresis

Figure 2(a) shows contours of constant volume of the meniscus in a region of the
(E∞, Ca) plane for ε = 20, λ= 0 and Λ = 103 (solid contours) and 2 × 104 (dashed
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Figure 2. Contours of constant volume in the electric field/flow rate plane (a) and the electric
field/electric current plane (b) for ε = 20, Λ= 103 (solid contours) and 2×104 (dashed contours).
Dotted curves give the minimum flow rate (in (a)) and the minimum electric current (in (b))
as functions of the electric field for each value of Λ. Contours shown are, from bottom-right
to top-left, V = 0.7, 0.9, 1.2, 1.5 and 2 for Λ= 103, and V = 0.7, 0.9, 1.2 and 2 for Λ= 2 × 104,
where V is the volume of liquid in the meniscus scaled with a3.

contours). Stationary solutions with a given volume of liquid in the meniscus exist
only above a certain E∞ at which the corresponding contour in figure 2(a) becomes
vertical. The minimum E∞ decreases, and the associated minimum Ca increases, when
the volume of liquid increases. The locus of these minima (dotted curves in figure 2a,
for each of the two values of Λ considered) defines the first boundary of the region of
existence of stationary solutions mentioned above. In the operation of an electrospray
at constant E∞, the domain is traversed downwards along a vertical line when the
dimensionless flow rate Ca decreases. The volume of the meniscus decreases with Ca

until the lower boundary (minimum Ca and volume for the value of E∞ chosen) is
reached. The electric current emitted by the jet is shown in figure 2(b).

It may be noted that a hydrostatic meniscus (Ca =0) with a given volume of liquid
attached to a metallic plate exists when E∞ is smaller than a certain E∞H

that also
decreases when the volume of the meniscus increases (see e.g. Higuera 2008b). For a
given volume, this E∞H

is larger than the minimum E∞ in figure 2(a). For example,
it is E∞H

≈ 0.86 for V = 0.9 and E∞H
≈ 0.56 for V =2, where V is the volume of

liquid scaled with a3. Therefore there is a range of E∞ where two stable solutions
are possible for a meniscus of a given volume; a hydrostatic solution with a rounded
surface and a meniscus that emits a thin jet from its tip, as in figure 4(a). (The second
solution, of course, requires a continuous supply of liquid to make for the flow rate
emitted by the jet and keep the volume constant). This multiplicity leads to hysteresis,
as will be discussed below.

In addition to the two stable solutions, there is also an unstable hydrostatic
solution for the same volume of liquid when E∞ is in a range that extends from
E∞H

to a smaller value E∞C
<E∞H

(see e.g. Taylor 1964; Miksis 1981; Wohlhuter
& Basaran 1992). The origin of this branch of unstable hydrostatic solutions is in
the intensification of the electric field and the electric stress at the surface when
the meniscus elongates under the action of the electric stress. The elongation of the
unstable meniscus increases when E∞ decreases, until the meniscus develops a conical
tip with an angle equal to the Taylor angle (Taylor 1964) for E∞ = E∞C

, which is the
end point of the unstable branch. The shape of this hydrostatic pointed meniscus has
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been computed by Pantano, Gañán-Calvo & Barrero (1994) for different values of
the volume of liquid in the usual configuration where the meniscus is formed at the
tip of a capillary, but similar results should be expected for a meniscus attached to a
metallic plate.

It has been proposed (Pantano et al. 1994; Fernández de la Mora 2007) that the
meniscus of a cone-jet tends to this pointed hydrostatic meniscus when the minimum
flow rate is approached. This proposal is based on the grounds that (i) the pressure
variation and viscous stresses due to the motion of the liquid are small compared to
the electric and surface tension stresses on most of the surface of the liquid when the
flow rate is small; and (ii) the electric field induced at the meniscus by the electric
charge of the jet is small. If these two conditions are satisfied, the electric stress is
determined by the shape of the meniscus only, and the equilibrium of electric and
surface tension stresses (plus a nearly uniform pressure of the liquid) is not be affected
by the flow in the meniscus or the presence of a jet. The finding of Fernández de la
Mora (1992), that cone angles very close to Taylor’s are formed near the minimum
flow rate, gives strong support to this proposal.

In the present configuration of a meniscus attached to a metallic plate, the
hydrostatic pointed meniscus analogous to that of Pantano et al. (1994) would
be realized at the lower boundary in figure 2(a), and the value of E∞ at which the
contour in this figure for a given volume of liquid becomes vertical would coincide
with E∞C

. In these conditions, the minimum value of E∞ in figure 2(a) for a given
volume of liquid should be independent of Λ, because this parameter does not enter
the analysis of the hydrostatic meniscus. This is not confirmed by the numerical
results; inspection of the numerical solutions shows that the charge per unit length of
the jet depends on the dimensionless conductivity Λ, and the electric field induced by
this charge on the meniscus is not entirely negligible for the values of Λ used in the
computations. The result, however, could be peculiar to liquids of low conductivity.
The estimates of § 3.1.2 suggest that, at the minimum flow rate, the charge per unit
length of the jet and the length of the current transfer region decrease when the
conductivity of the liquid increases. This tends to bring the limiting shape of the
meniscus at the lower boundary in figure 2(a) closer to the hydrostatic shape for
liquids of high conductivity. But, since the hydrostatic meniscus is unstable, it is not
clear how closely it can be approached, by decreasing the flow rate and therefore the
effect of the charge of the jet, before the instability develops. This instability could set
a different lower bound to the flow rate for liquids of high conductivity. The insets in
figure 5 below show that the limiting meniscus may resemble a Taylor cone already
for the moderate conductivities considered here.

Figure 3 shows a more complete picture of the domain of operation of a cone-jet.
It includes an upper E∞ boundary, at the right-hand side of the figure, in addition
to the lower boundary discussed above. The electric stresses at the surface increase
with E∞ and disrupt the meniscus when the upper boundary is crossed. Below this
boundary, the electric stresses are balanced by pressure and viscous stresses, whose
strength increases with the flow rate Ca. For this reason, the minimum Ca at which
a stationary solution ceases to exist increases with E∞ on this upper boundary. The
insets at the right-hand side of the figure illustrate the disruption of the meniscus
when the upper boundary is crossed. The meniscus does not resemble a Taylor
cone near this boundary. Moreover, since the condition of axisymmetry used in the
computations needs not be satisfied in reality, a transition to a multiple-jet mode
may occur for a value of E∞ smaller than the upper boundary. Figure 3 also shows
that the volume of the meniscus decreases when E∞ increases at constant flow rate,
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Figure 3. Contours of constant volume in the electric field/flow rate plane for ε =20, Λ= 103

and λ= 0. Contours shown (solid curves) are V = 0.5, 0.6, 0.7, 0.8, 0.9, 1.2, 1.5 and 2, increasing
from bottom to top. The dashed curves give the minimum and maximum values E∞ between
which a stationary solution exists as functions of the flow rate Ca. The chain curve gives the
value of E∞ at which a cone-jet is first established when this parameter is gradually increased
at constant flow rate.

which is in agreement with experimental results (Hayati, Bailey & Tadros 1987;
Cloupeau & Prunet-Foch 1989). The radius of the jet in the current transfer region
(not shown) follows the same trend. The dash-and-dot curve in figure 3 shows E∞H

for different values of the volume of the meniscus. Since no hydrostatic solution
exists above E∞H

, this curve gives the value of E∞ at which a cone-jet first appears
when E∞ is gradually increased, while the dashed curve at the left-hand side of the
figure gives the value of E∞ at which the cone-jet disappears when E∞ is gradually
decreased.

3.1.2. Current transfer region and breakdown at the lower E∞ boundary

Figure 4 shows different magnitudes pertaining to the solution of (2.1)–(2.5) as
functions of the distance x from the metallic plate for Λ = 2×104, ε =20, λ= 0, V = 1.2,
and the two values of the applied field E∞ =0.568 (which is about the minimum E∞
for this value of the volume; see figure 2a), and E∞ =0.70. The corresponding
values of the dimensionless flow rate are Ca = 0.111 and 0.877, respectively. As
can be seen in figure 4(b), there is a cross-over point where the conduction and
convection contributions to the electric are equal to each other. This occurs at x ≈ 2
in the first case and at x ≈ 3 in the second. The components of the electric field
normal and tangent to the surface (not displayed) have maxima near this cross-over
point.

In the two cases shown in figure 4, the current transfer region where convection of
the surface charge takes over from conduction is well into the jet, where the flow is
quasi-unidirectional and (2.8) applies. To further check this result, the three terms of
(2.8) (with ∂τ 0

n /∂x = τ 0
t = 0) have been evaluated using the full numerical solution of

(2.1)–(2.5) with the velocity at the symmetry axis playing the role of v. The results are
shown in figure 4(c). The sum of the three terms (dotted curves), which would be zero
if (2.8) were satisfied exactly, gives an idea of the error involved in the approximation
of quasi-unidirectional flow. As can be seen, this error is small in the current transfer
region, where the viscous and electric forces (first and third terms of (2.8); dashed
and solid curves in figure 4c) are the major axial forces. The estimates worked out
elsewhere for a slender current transfer region (Higuera 2006, 2008a) are therefore
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Figure 4. (a) Radius of the cross-section of the surface, (b) conduction (solid) and convection
(dashed) contributions to the electric current, (c) axial forces acting on the liquid per unit
streamwise length (electric force, 2πrsτ

e
t in the last term of (2.8) (solid); viscous force, first

term of (2.8) (dashed); force due to the normal electric stress and the surface tension,
πr2

s ∂(τ e
n − 1/rs)/∂x in the second term of (2.8) (chain) and sum of these three forces (dotted))

and (d) stresses normal (τn = τ e
n − ∇ · n, solid) and tangent (τt = τ e

t , dashed) to the surface as
functions of the distance x to the plate for V = 1.2, ε = 20, Λ= 2 × 104, λ= 0, and E∞ = 0.568
and 0.7 (in (a)–(c)), and 0.568, 0.7 and 2 (in (d)), increasing as indicated by the arrows. The
dotted line in (a) has the slope of a Taylor cone.

valid down to nearly the minimum E∞ and Ca in figure 2(a). Briefly summarized,
these estimates give the electric current, the radius of the jet in the current transfer
region and the characteristic length of this region as

I ∼ Λ1/2E2/3
∞ Ca2/3, rs ∼ rsT =

Ca1/3

Λ1/4E
1/6
∞

, � ∼ Ca1/3

E
2/3
∞

(3.1)

for Λ1/2/E∞ 
 ε. The results (3.1) follow from the conditions that (i) the conduction
and convection contributions to the current are of the same order (ΛE∞r2

s ∼ σvrs ,
with v ∼ Ca/r2

s ); (ii) the axial field induced by the electric charge of the jet, which acts
as a line of charge, partially balances the applied field (σrs/� ∼ E∞; see e.g. Ashley
& Landahl 1965; Hinch 1991) and (iii) the axial electric force acting on the surface
(2πrsτ

e
t in (2.8)) is of the same order as the axial viscous force (first term of (2.8)),

which gives r2
s v/�2 ∼ rsσE∞. In dimensional variables, denoted with asterisks, the
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Figure 5. Maximum value of εE1n/σ on the surface of the liquid as a function of E∞ for
ε = 20, Λ= 103 (solid) and 2 × 104 (dashed), λ= 0 and V = 0.7, 0.9, 1.2, 1.5 and 2 for Λ= 103

and 0.7, 0.9, 1.2 and 2 for Λ= 2 × 104, increasing from right to left. The insets show the
contours of the menisci at minimum E∞ for V = 0.9.

estimates (3.1) read

I ∗ ∼ ε
1/3
0 μ1/6K1/2E∗2/3

∞ Q2/3, r∗
sT

=
ε

1/6
0 μ1/12Q1/3

K1/4E∗1/6

∞
, �∗ ∼ μ1/3Q1/3

E∗2/3

∞
(3.2)

for μ1/2K1/2/ε0E
∗
∞ 
 ε, which are independent of the radius of the orifice a.

According to (3.1), the ratio of the electric relaxation time (te = ε/Λ in dimensionless
variables) to the residence time of the flow in the current transfer region
(tr = �/v ∼ �r2

s /Ca) is te/tr ∼ εE∞/Λ1/2 � 1 in the conditions when (3.1) applies.
Electric charge has plenty of time to accumulate at the surface and screen the
liquid from the outer normal field E0n during the transit of the liquid across the
current transfer region. Therefore charge relaxation effects are not expected to play
an important role when εE∞/Λ1/2 is small. This is confirmed in figure 5, where
the maximum value of εE1n/σ is small for Λ =2 × 104 (dashed curves), for which
εE∞/Λ1/2 is of the order of 0.1 in the conditions of the figure, and moderate for
Λ =103 (solid curves), for which εE∞/Λ1/2 is about 4.5 times larger. In both cases,
εE1n/σ increases with E∞, except in the vicinity of the minimum E∞. Notice that
εE∞/Λ1/2 = εε0E

∗
∞/μ1/2K1/2 does not depend on the radius of the orifice.

The slender current transfer region discussed here is quite different from the current
transfer region around the tip of a conical meniscus analysed by Fernández de la
Mora & Loscertales (1994), where charge relaxation effects are necessarily important.
For the moderate conductivities considered in this paper, the numerical results show
that charge relaxation effects are not important insofar as εE∞/Λ1/2 is small. However,
the situation may be more complex for liquids of high conductivity or larger injection
orifices, for which the dimensionless radius of the jet is very small and the electric field
acting on the jet is of the order of the electric field of a Taylor cone in a wide region
downstream of the apparent apex of the meniscus. The balances leading to (3.1),
which rely on the assumption that the electric field is of order E∞, should be modified
when the transfer of current to the surface occurs in this region. Replacing E∗

∞ in
(3.2) by the field of a Taylor cone at a distance �∗ from its apex, E

T
∼ (γ /ε0�

∗)1/2,
these estimates transform into the well-known alternative estimates

I ∗ ∼ γ 1/2K1/2Q1/2, r∗
sT

∼ ε
1/4
0 μ1/8Q3/8

γ 1/8K1/4
, �∗ ∼ μ1/2Q1/2

γ 1/2
, (3.3)
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which are applicable with the restrictions noted in Higuera (2003) and could provide a
connection with the charge relaxation region of Fernández de la Mora & Loscertales
(1994). In particular, analysis of this important case should clarify whether the current
transfer region still extends into the jet at the minimum flow rate. Unfortunately, this
analysis is beyond the scope of the numerical method used here, due to the disparity
of the jet and meniscus scales.

Figure 4(d ) shows the normal and tangent stresses acting on the surface of the
liquid for three values of E∞. The net normal stress is the difference between the
outward electric stress τ e

n and the inward surface tension stress ∇ · n. The tangent
stress is τ e

t . At the largest value of E∞ in figure 4(d ), the normal stress is positive
(points away from the liquid) in the whole meniscus and an ample region of the jet,
pulling the liquid into the jet in combination with the electric shear stress. As E∞
decreases keeping the volume of liquid constant, the normal stress becomes negative
in the meniscus and takes positive values only in a limited region of the jet. This
region disappears, leaving a normal stress that points everywhere towards the liquid,
when E∞ approaches its minimum value. In these conditions, the motion of the liquid
towards the tip of the meniscus and into the jet is only due to the electric shear
stress, with the normal stress inducing a pressure gradient that pushes the liquid in
the streamwise direction only within the region of the jet where ∂(τ e

n − 1/rs)/∂x > 0
(see (2.8)).

The flow rate that the electric shear stress can drive into the jet decreases with
E∞, despite the intensification of the field around the tip of the meniscus due to the
decrease of the jet radius, which causes the peak value of τ e

t in figure 4(d ) to increase
when E∞ decreases in the vicinity of its minimum. Apparently the electric shear stress
cannot overcome the inward normal stress when E∞ falls below the minimum in
figure 2(a), and a stationary solution ceases to exist.

Numerical simulations of the evolution following a step decrease of E∞ from a value
slightly above this minimum to a value slightly below show that the jet collapses at
a point not far from the meniscus and the tip of the meniscus subsequently recedes
and becomes blunt.

The electric shear stress is always small in the meniscus. The normal stress is nearly
uniform in the meniscus at the smallest value of E∞ in figure 4(d ), which means that
the flow is weak and the normal stress is balanced by a nearly uniform pressure of
the liquid. When E∞ increases, the flow in the meniscus intensifies and the normal
stress ceases to be uniform.

In orders of magnitude, the ratio of surface tension to normal electric stress in the
current transfer region is (1/rs)/τ

e
n ∼ 1/(Λ1/4E5/6

∞ Ca1/3), where use has been made of
(3.1) to estimate the normal electric stress as τ e

n ∼ σ 2 ∼ (IrsT /Ca)2. This ratio is small

if Ca 
 1/(Λ3/4E5/2
∞ ) (or Q 
 γ 3/(ε0μ

7/4K3/4E∗5/2

∞ ), independent of a, in dimensional
variables), whereas the effect of the surface tension comes into play and may lead
to the capillary breakup of the jet before the transfer of current to its surface is
complete if this condition is not satisfied. This coarse estimation suggests a minimum
flow rate that decreases when the electric field or the electrical conductivity of the
liquid increase, in qualitative agreement with the trends of the numerical results in
figure 2(a). Similar arguments have been used by Kim & Turnbull (1976) and Larriba
& Fernández de la Mora (2009) for a related problem.

3.2. Case of λ> 0

Figure 6(a) shows longitudinal sections of the interface for λ=0, 0.01 and 0.1 and
constant values of other parameters. The radius of the jet increases with λ and does
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Figure 6. (a) Radius of the cross-section of the surface, (b) conduction (solid) and convection
(dashed) contributions to the electric current, (c) density of free surface charge and (d) axial
forces acting on the inner liquid per unit streamwise length (electric force, 2πrsτ

e
t in the last

term of (2.8) (solid); force due to the axial viscous stress in the inner liquid, first term of (2.8)
(dashed); force due to the normal electric stress and the surface tension, πr2

s ∂(τ e
n − 1/rs)/∂x in

the second term of (2.8) (chain) and viscous force due to the outer liquid, 2πrsτ
0
t in the last

term of (2.8) (dotted)) as functions of the distance x to the plate for Ca = 3, E∞ = 2, ε = 20,
Λ= 103 and λ= 0, 0.01 and 0.1, increasing as indicated by the arrows.

not tend to zero far from the orifice when λ> 0. As was discussed in § 2, this is due
to the viscous shear stress of the outer liquid on the interface, which slows down the
inner liquid and causes the jet to thicken in order to absorb the imposed dimensionless
flow rate Ca. The increase of the radius has a direct effect on the size of the drops, if
the jet eventually breaks up. It also has an effect on the electric current transported
by the jet. The bulk conduction current and the surface convection current are shown
in figure 6(b). The conduction current does not tend to zero far downstream. When
λ increases, the conduction current increases and makes an increasing contribution
to the total current, which also increases (see figure 1), while the convection current
decreases. The density of electric charge at the interface (figure 6c) increases with
λ, despite the decrease of Is = 2πσvrs , because the decrease of vrs overcomes that
of Is . The continuous stretching of the jet that causes σ to decrease downstream of
the current transfer region when λ= 0 ceases to exist when λ> 0. The maximum of
σ becomes shallow and even disappears when λ increases. The axial forces per unit
length of the jet in the region of quasi-unidirectional flow are shown in figure 6(d ).
The electric force (solid curves) does not tend to zero far downstream when λ> 0. It
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is balanced mainly by the viscous force due to the outer liquid (2πrsτ
0
t in (2.8); dotted

curves in figure 6d ), while the force due to the axial viscous stress of the inner liquid
(dashed curves) tends to zero faster than when λ= 0.

Apparently it is not always possible for the jet to attain the asymptotic viscous-
electric shear balance discussed in § 2. The numerical computations fail to converge
to a stationary solution above a certain Ca that decreases when λ increases or E∞
decreases, as was mentioned before. Notice that this limitation due to the viscous
shear stress on the interface of the jet is different from the limitation due to the drag
of the drops generated by the breakup of the jet, which leads to a space charge that
reduces the field on the meniscus if the voltage applied between the electrodes is kept
constant (Fernández de la Mora 2007).

The increase of the electric current with λ in figure 1 is accompanied by an increase
of the volume of the meniscus, whose shape also changes, making the transition to
the jet more smooth when λ increases. If the volume of the meniscus is kept constant,
then the flow rate and the electric current are decreasing functions of λ (see figure 7).
The minimum value of E∞ at which a stationary solution with a jet exists for a given
volume of liquid increases with λ.

The order of magnitude estimates leading to (3.1) can be extended to take into
account the effect of the viscous shear of the outer liquid on the interface, and thus
may shed some light on the conditions under which this effect is important. For very
small values of λ, the effect of the outer liquid comes into play only far downstream
of the current transfer region, at distances from the orifice where rs given by (2.9)
becomes of the order of rs∞ in (2.11) and the continuous stretching of the jet is
arrested. The ratio of this asymptotic radius to the characteristic radius of the jet in
the current transfer region (rsT in (3.1)) is

rs∞

rsT

∼ �1/4 with � =
λΛ1/2

E∞
, (3.4)

where I from (3.1) has been used to evaluate rs∞. Thus, the conduction current left
in the jet is small compared to the total current, and the estimates (3.1) apply, when
� � 1. When � is of order unity, the viscous shear stress of the outer liquid is of the
order of the electric shear stress in the current transfer region, and the two stresses
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can balance each other before the transfer of current to the interface is complete.
This result provides a qualitative explanation of the numerical computations, which
show that the fraction of the total current left as conduction current in the far jet
increases with λ (figure 6b) and also when Λ increases or E∞ decreases (results not
displayed). The parameter group G = I 3/λΛ2E∞Ca2 in the discussion following (2.10)
is large when � � 1, in which case the radius of the jet approaches the lower root of
(2.10) when the viscous shear stress of the outer liquid becomes important far from
the orifice, while G = O(1) when � =O(1), in which case the two positive roots of
(2.10) are of the same order or do not exist.

The estimates also suggest that, when � becomes large, the axial force 2πrsτ
0
t

due to the viscous shear stress of the outer liquid becomes of the order of the axial
viscous force of the inner liquid (first term of (2.8)) in a leading region of the jet where
the electric current is still dominated by conduction in the inner liquid. The axial
field induced by the surface charge of the jet almost completely balances the applied
field in this region, making Et � E∞. The surface charge satisfies σrs/x ∼ E∞, as in
the derivation of (3.1), so that τ e

n ∼ (x/rs)
2E2

∞ and πr2
s ∂τ e

n/∂x ∼ E2
∞x in the second

term of (2.8). This force, due to the axial gradient of the pressure variation induced
by the normal electric stress, drives the liquid in the region of interest, which is
defined by the simultaneous balances ∂(3πr2

s ∂v/∂x)/∂x ∼ πr2
s ∂τ e

n/∂x ∼ 2πrsτ
0
t . Using

v ∼ Ca/r2
s and τ 0

t ∼ λv/rs , these balances give x ∼ � = Ca1/3/E2/3
∞ (as in (3.1)) and

rs ∼ rs0 = λ1/2Ca1/3/E2/3
∞ . The term ∂(3πr2

s ∂v/∂x)/∂x becomes negligible for x 
 �,
and the balance of the other two terms gives then rs ∼ λ1/2Ca1/2/E∞x1/2 = rs0(�/x)1/2.
The axial field needed in the inner liquid in order for conduction to supply the
surface charge required in this region (σ ∼ (x/rs)E∞) is E1x ∼ E5

∞x3/λ2ΛCa, from
the condition ΛE1xr

2
s ∼ σvrs . This axial field becomes of the order of E∞ when

x ∼ λ2/3Λ1/3Ca1/3/E4/3
∞ = �2/3�, where rs ∼ rs0/�1/3 and (Ib, Is) ∼ λ1/3Λ2/3E1/3

∞ Ca2/3.
The condition E1t ∼ E∞ defines the current transfer region when � 
 1. The axial
electric force (2πrsτ

e
t in (2.8)) overcomes the pressure gradient force πr2

s ∂τ e
n/∂x in the

current transfer region, and the equilibrium τ 0
t ≈ −τ e

t leading to (2.10) is achieved
downstream of this region. However, the estimate of the electric current derived here
amounts to G = O(1) for � 
 1, so that (2.10) might not have solution.

The role of the outer liquid discussed in this section can be easily played by a gas
(which is very often present), given the small values of λ required for the outer fluid
to have a noticeable effect on the jet. The inertia of the outer fluid is not likely to
bring qualitative changes to the results of this section insofar as the thickness of the
viscous layer of this fluid is of the order of the radius of the jet or larger.

4. Conclusions
Numerical computations of the flow, the electric field and the transport of charge

in the meniscus and the current transfer region of an electrospray of a very viscous
liquid of small conductivity have been carried out to determine the conditions of
existence of a stationary cone-jet. Different boundaries of the domain of operation in
the applied field/flow rate plane have been found. At constant flow rate, the applied
field can be varied between a minimum, below which the electric shear stress cannot
sustain the cone-jet, and a maximum, above which the electric stress disrupts the
meniscus. Both limits depend on the flow rate. Electric relaxation effects may be small
in the current transfer region of the jet, which is a slender region for any value of the
flow rate.
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A viscous dielectric fluid often surrounds the cone-jet, and the viscous drag due to
this fluid then balances the electric shear force and stops the stretching of the jet at
some distance from the meniscus. An estimate has been worked out of the conditions
under which the effect of the outer liquid comes into play in the current transfer
region and modifies the electric current. The numerical results show that a stationary
cone-jet can be established only below a certain maximum flow rate in the presence
of an outer fluid.

The author is indebted to Professor Fernández de la Mora (Yale) for insightful
comments and criticisms. This work was supported by the Spanish Ministerio de
Educación y Ciencia through Project No. DPI2007-66659-C03-02.

REFERENCES

Ashley, H. & Landahl, M. 1965 Aerodynamics of Wings and Bodies, Ch. 6. Addison-Wesley.
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